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EQUATION4S OF THE PROBLEM OF DET.ANING THE LCCATION 01 A MOVING

OBJECT 3Y GYROSCOPES AND ACCELESGNETERS

A. Yu. Ishlinskiy (NIcsccw)

S umnmar y

ThR problam of the so-called autonomous, i.e., without using

external references, det.srmizatioi of the location of a moving object

is of great practical significance. Until recently, this problem had

virtually no chances fcr practical resolution because of the lack of

precision of tha sensors availabla to the engineer for this purpose,

namely - newtonometers', or accelerometers, gyroscopes, and

integrators.

Footnote: 'We are proposiag that tas instruments previously known in

tachnology as accelerometers, or acceleration meters. subsequently be
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called newtonometers, since they measure the combined action of both

the forces of inertia cf translational motion and the forces of

gravity on their sinsor. It is the projection of the resultant

combination of these fcrces on d certain direction bound to the

instrumsnt, which we will subs~quently call the axis of sensitivity

of the newtonometer, which is measured.

de will ooint out tnat the above forces of inertia of

translational motion sbcula be determined, of course, relative to a

cocrdinate system which is stricziy bound to the instrument itself.

Coriolis forces of inertia usuallj do not affect the instrument

reading. End footnote

However, recently the creation of new elements (1] has already made

it possible to solve this prcolem with satisfactory precision, as

long as the duration of zovement of the object is short.

This report considers the theory of one possible version of the

problem of the autonomous deterinaation of the location of a moving

object.

the important problem of estiaating the precision of the

determination of locaticn, which is affected by the presence of the
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so-called instrument errcrs or the newtonometers, gyroscopes and

other components of the system, is beyond the scope of this report

and may becoae the object of special studies. Therefore, in the

future we will assume that the above components operate without

errors. Accordingly, the elc-czcaechanical system which solves the

problam will be considered with the assumption that all of its

parameters precisely ccrrespond to their theoretical values, and that

there are no technological errois (e.g., lack of precision of

assembly and free strokes ia transmissions). Furthermore, the initial

conditions of small oscillazicas ot this system can be arbitrary.

1. First we will give the sclution of the known problem of

autonomous determinaticn duzing toe movement of an object over an arc

cf the great circle of a cartain nonrotational sphere S, whose center

coincides with the center of tne Earth (Pig. 1) . In the simplest

case, this corresponds tc movemenz at a constant altitude above the

equator. Here the determination of the location of the object

relative to the Earth itseif is zeduced to simply timing the

movement.
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?ig. 1. Fig. 2.

We will bind two systems oi coordinates xy and e* ,* having the

same origin with a certa±a deaminized point of a moving object (Fig.

1). Hanceforth, we will ca~.l tais point the center of the object. The

x-axis of coordinate system xy is airected along the velocity vector

of ths object v. Accordingly, tne y-axis is the continuation of the

Earth's radius passing througu zhe center of the moving object. The

direction of ths axes cf coordirate system e*i is fixed (relative to

stationary stars or, analogously, relative to sphere S).

Suppose that the movements of both coordinate systems coincide

at the initial point in time. Suosequently, ccordinate system xy will

be turned relative to crcrassively moving systom E by a certain
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angle 0 which varies through zise. This angle is related to the

distance s = s(t) covered by the center of the object from the

initial point by the reiationsahi

S s- - (1.1)

Here R is the radius of mae arc of the great circle (the Earth's

radius) over which the cenzer of tae object mcves.

4e will place a certain platform 1 stabilized by gyroscopes on

the object (Fig. 2). In the simplest case, this platform is oriented

by special servo systems so tna it is always perpendicular to the

vector of the intrinsic kinetic inment of a certain gyroscope (Fig.

2). The bearings of the axle of tue outer ring of Cardan joints for

the suspension of this gyroscope can be attached to a stabilizing

platform.

Let the intrinsic Kinetic momant of tha gyroscope H lie in the

plans *, and a certain moment f = M(t) be appliad to the axis of

the outer ring of its suspension. in this case, the precession of the

gyroscope axis occurs in the same plans *q[*. Following the

gyroscope, the stabilized platform will rotate at an angular velocity
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where V is the angle between the axis of natural rotation of the

gyroscope and axis i*

Furthermore, (Fig. 2) we will. place newtonometer 2 in the plane

of the stabilized oiat for. 1 and wi; viii use a = a(t) to designate

its current reading.

Le'at thp axis of sensitivit~y oi the newtonometer coincide with

the x-axis. Trhen its reading att) (Fig. 3) is expressed by the

formula

a(l)=(/- )sina os a (1.3)

N

Fig. 3.

Here is the gravitatioaal force per unit mass, and the anlgle
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X= - (1.4)

is the deflection of the staDllizea platform from horizontal

direction (to be more precise, perpendicular to the Earth's radius).

If the function a(t) obtained dt tae output of the newtonometer is

integrated using special devices, as a result we can form the new

function

K a(t)dt + (1.5)
0

whers K and m are certain constant paramet?rs. The necessary values

of these parameters will ae established later.

We can reproduce funczcn (1. 5) in the form of moment M (t)

acting on the gyroscope of the stanilized platform. Then, plugging

1(t) into formula (1.2) and integrating, wa will have

= ja(t)dt) +-+4 (1.6)
00

where +, is the angle of inclination of the stabilized platform to

the horizon at the initial point in time t = 0 (to be more precise,

to the x-axis, or to axis 4*, wbica coincides with it at this

instant).

Considering formulae (1.13 ana (1.4) and relationship (1.6), we
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will have the equation

ttf

= adt - (1.7)
O0

which makes it possible to set up the differential equation for the

function a = a(t) and tne initial conditions of this equation.

Actually, setting t = 0 in equatioa (1.7) and noting that (0) = 0, we

will have

S(0(1.8)

which, of course, also zc.LAows airectly from formula (1.4).

Subsequently, we will equate tae derivatives of the left and right

sides of squation (1.7). 4e wi.l octain

t
da i ds i di (1.9)-d zR"da --I- t)d

0

Whence it follows that tae initial value of the derivative of

function a(t) through tize is exfressed by the formula

da (0) r (0) M V (0) = s 0')  .0

Here v(0) is the ini.tal valu4 of the velocity of the center of

the object relative to ncnrotatinj sphere S.

Finally, if we di ereaiate both siles of aquation (1.7) once
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more and consider formula (1.3), w3 will arrive at the relationship

d2
ai K '2' inatCo d's

With a given function a = s(T), this ralationship can be

considarqd to be the seccnd-order aifferentia! equation for the

function a = a(t), i.a., for zne aagle of inclination of the

stabilized platform to the aorizon. Tha initial conditions of this

differential equation are aeterained by equations (1.8) and (1.10).

2. Differential equarion tI.11) has a partial integral

M --0(2.1)

which is extramely importaat for solving the problem of the

autonomous determination of tha position of a moving object, as long

as the equation

I K (2.2)

is satisfied, as it is nct hard to see, and the initial conditions

are such that

a _) o (2.3)
(0) =O, a
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Equation (2.2) determines the value of parameter K. Together

with equation (1.8), the first condition of (2.3) leads to the

requirement that there is ao initial deflection of the stabilizing

platform from the horizcn, i.e., tne equation

0 (2.4

4S satisfied.

According to the second coaaition of (2.3) and formula (1.10),

we will have

-- (2.5)

This determines the value oi parameter a in the device which

forms function (1.5).

Thus, when conditions (2.4) and (2.5) are observed, as well as

equation (2.2), the stabilized platform will remain horizontal (to be

more precise, it will be perpendicular to the Earth's radius) with

any law of the movement of the center of the object s = s(t).

However, if a = 0, a(t) = das/dt2 in accordance with formula

(1.3) and, consequently, with consideration of conditions (2.5) and

(2.2), function (1.5) will assume the form:
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K [ ,dt + v(O)] Kv() (2.)

0

Thus, in this case, with irecision down to the constant factor

K, function (1.5) is the currazt value of the velocity of the object

v = v(t) relative to ncnrotating sihere S. Therefore, if we now apply

function (1.5) to the second integrating device, with the same

assumptions, at its outpu; we wili obtain the unknown distance s(t)

covered by the centar ci :ae oaSecz from the original position (also

with precision down to tha tacror )

3. In the same general case, ihen a , 0, the valua

S[K at)dt + m]jdt (3.1)

o 0

generated by the above integrating devices differs from the product

Ks(t). According to oquatlon 11.7) and condition (2.2), we will have

Ka (t) di +m} dt -RazQ)+ R+8 (3.2)
0 0

Thus, the value of tne error as in det.rmining the distance by

the above metho4 is

1s R- (0)] (3.3)
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where a(t) is detrmined oy dliftar-ntial equation 11.11) with initial

conditions (1.8) and (1.10) and tne observation of equation (2.2).

The angle a(t) of the inclination of the stabilized platform to

the x-axis can be considered to be extremely small. Therefore,

dropping the terms with tae second order of smallness relative to a

from equation (1.11) and considteriag equation (2.2), we will arrive

it the following homogeneous linear differsntial equation:

dsa 1 V2 0. v

W1+ - - 0 (3.4)

With the known approximaticn we can assume that

'_ -g = const (.5

where g is the value of tae dcceleration of the force of gravity in

the region of movement cf tae object. In this case, the solution to

equation (3.4) is in the forn ox a geometric function:

a(t) - (0) Cos 1+ 0) sin 1 (3.6)

whose period

= 21t- 84.4 min.
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is known in gyroscope tneory 4S tha Schuler period.

Thus, in g-neral, according to formulae (3.3) and (3.6), the

error in the autonomous dezarminarion of thi location of the object

by the above method fluctuates.

4. We can also suggest otnez maetaods of determining the location of

an object which generally lead to the same results.

For example, suppose the platform is stabilized relative to

coordinate system e* * so that it remains parallel to the e*-axis.

This stabilization can te obtained by free gyroscopes or by tracking

stars (astronavigation) L2 J. In tais case, the newtonometer should be

turned relative to the platform ay the following angle

x=X -' -- L a 9)di.+6'(0)

00

fo: which its readings should be integrated twice.

With the precise cbservation of certain equations similar to the

preceding equation, we 0ave
S=R X (4.2k
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There are original devices wnich perform the double integration

immediately without breaking it down into two succassive operations

(Bovkov integrator) [3].

5. We will proc.ad to thd consideration of the problem of

iateraining the locaticn of an ocjct whose center moves randomly

over the Earth's spherE. For solving this problem we will use a

platform stabilized by gyroscopes, so that the angular velocities

41 , wy = " o0 .= -- (5.1)

around the x- and y-axes ling in the plane of the platform and the

z-axis normal to it arose Decause three moments 31, Ma and M3 applied

to the axes of the gyroscope housags.

Figure 4 shows a possiDla diagram for realizing this type of

stabilization. The plane of the platform P, which is connected with

the object by a three-dimensional cardan suspension (not shown in the

figure), is continuously made to coincide with the plane

perpendicular to the intrinsic axis of the gyroscope 1 by servo

systems. The bearings cf zbe axis of the outer ring of this
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gyroscope's cardan suspension are arranged on the stabilized platform

so that the axis itself lies in tn plane of the platform. When the

servo system operates pezfaczly, the axis of the inner ring, i.e.,

the axis of the gyrosccpe aousiny, also coincides with the plane of

the platform. Let 11 and A2 be tae moments applied to the axis of the

outer ring of the suspensica aud tne axis of the housing,

respectively, designated ay x and 1. The moments M& and M2 cause the

precession of the gyroscope and, consequently, the rotation of the

platform around the x- and y-axes at angular velocities w, and wf.

The values of the latter aza determined by the first two formulae in

(5.1)

Fig. 4.

The bearings of the axis of -ne outer cardan ring of the

gyroscope 2 (Fig. 4) are connected to the platform with the same

intrinsic kinetic moment d as tag iirst. The axis of this outer ring

is perpendicular to the Elane or tae platform. A certain correcting
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moment is applied to this axis so that the natural rotation axis of

the gyroscope 1 is parallel to the plane of the platform.

Furthermore, a special servo system continuously makes the above

x-axis, which should be considered to be rigidly bound to the

stabilized platform, ccincide with the natural rotation axis of the

gyrcscope 2. The moment M3 applled to the axis of the housing of the

sacond gyroscope causes thne precession of the gyroscope and,

consequently, the rotaticn of the platform parallel to the z-axis, at

angular velocity w." The iattar is perpendicular to the plans of the

platform, and together with tne x- and y-axes, forms rectangular

coordinate system xyz, whIca is zigidly bound to the platform. We

will consider tha origin of this system to be located in the center

of the object. The values of Nj and w7 are related by the third

formula of (5. I).

Two newtonometers whose axes of sensitivity are directed along

the axes of coordinates x and y ara located on the stabilized

platform in the direct pzoximitj or the origin of coordinate system

xyz. Let the center of the moving object move randomly over the

Earth's sphere, and the moments a, and M2 be related to the readings

of the corresponding newtonometers aX and aI by ths formulae

a f

M,=- K 1adt- m,, MI .-- K ,d "+ m, (5.2)
f w

for which special integrating devices must be provided.
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We will explain what parameters K, m, and m2, and also moment M3

must be in order for the plane oi the platform to remain horizontal.

Tha projections of tae accele;ation of the origin of coordinates

relative to nonrotating sphera S on the x-, y- and z-axes is

axprassed by th- formulae [4, 5J

I ~~wX = --- + "V: -- vdi1

- t + (IZV' - WZVZ
-dv + ZVZ - X VZ(.3

di1

wherq v, v and v1, are t e projections of the velocity of the origin

of coordinates on the same axes relative to sphere S. In the case in

question, v. = 0, and the forca cf gravity has projections equal to

zaro on the x- and y-axes. Therafore, the n9wtonometers directly

measure accelerations w. and V, and according to formulae (5.1) and

(5.2), the following equat.Lons bold:

-d + ,zr+ dt -

H [ dt m0

-Wi- JIVY jm+p (5.4)

Since the platform mus remaza horizontal and the z-axis

directed along the Zartn*s rarius as the object moves, in aquations
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(5.4) we should (51 consider rnat

v. = ,bvR, V, = - wxR (5.5)

Using these formulae, we will eliminate the values wx and

from equations (5.4). We 1il1 nave

VX = dt +m.

di H + ff (5-6)
0

3quations (5.6) must aa satistiad during a random change in vx

and vit, i.e., they must be identizies. icwever, this is only possible

with the following conditions:

R 0_, m = 'KV' (0), m2 = Kv, (0) (5.7)

The first conditicn coincides with equation (2.2); the second,

according to the third formula of (5.1), leads to the requirement

.13 =0 (5.8)

Finally, the last two conditions concern the agreement of the

initial velocity of the canter or the moving cbject (relative to

sphere 3), or to be more precise, its projection on the x- and

y-axes, with parameters m, and m of the integrating devices.
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6. According to fcruulae ( 5 .1), (5.2) and (5.8), as a result of

the work of the integratcrs, tae projections of the angular velocity

of the stabilized platform wx and are now known time functions,

w- _ 0, and the z-axis is dlrected along the Earth's radius.

Theoretically, this makes it possinle to continuously determine the

location of the object on tne Bartn's sphere and its course.

Actually, we will ccasider (Fig. 5) the so-called geographic

triangle , whose apex colaciaas with the origin of coordinate

system xyz (i.e., with tha center of the object); side is directed

towards the east, side ?I - towards the north and, finally, side -

from the Earth's radius upward. The projections of the angular

velocity u of this triangle raiative to nonrotating sphere S on sides

,7 and C are expressed L6] by taa formulae

VN UV 3  -!
u=t ' U + U Cos 4P, i. , tg + U sin cp (6.J)

Rr



DOC = 0925 PAGE 20

,'//

4 fdq

e16#st/

i g. 5. F ig. 6.

Here U is the angular velocity of the Earth, 0 is the current

latituda of the location, and Vs and V are the eastern and northern

coaponents of the velocizy of too center of the object relative to

the Earth, respectively. Ooviously,

VE -Rcos T w---, VI = R dt (6.2)

whers X is the current longitude.

In this case, side C coincides with tha z-axis. Therefore, the

projections l, w% and w. are related to the values -ft...F. and u. by

the relationships
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u cos X + u, sin X
dx (6.3)= -Ut sin X + U-4 Cos X, (az =a Ut + -X(63

where X is the angle between zae e- and x-axes (Fij. 6).

Considering formulae (0.1) and (6.2) and the fact that wz. = 0,

and that 4--z(t).and cv=a1 (L) are unknown time functions, according to

relationships (6.3) we will a~ziva at a system of three differential

equations:

-= -COSY++ -j-,coscpsinlX=a(t)d--? d o 4 i X = 6) (t)C64

(U + -2 sinp + ±-=O

for the three unknown functions o(t), x(t) and X(t).

with known initial conait;.crs ,(0), X(0) and X(0), i.e., data on

the location of the object and its orientation at the initial point

in time, equations (6.4) can oe integrated on a special computer.

Here it is helpful to solve tnem first for the derivatives, i.e., to

represent them in the form
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ds

dx ~ ( ) Sill X + () Cos
-t 

') 1 ii -- ~1 ox tg (P

Having determined functions o(t) and X.(t), we can also find ths

coursej of the. object, i.e., the angle 7% which its velocity vector

forms r3lative to the farth's surface with the meridian of the

location (Fig. 7). Acccrdi.ng zo tormulaq (6.2) and (6.5), the course

A is determined by the ejudzioa

=g U Cos (P (a.(1) Sin X - (f) Cos x (6.6,

17

',

Fig. 7.

7. Now we will prcceed to studying the small movements of the
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stabilized platform with thne assumption that at the initial instant,

its plane was not in a precisely horizontal position and conditions

(5.7) of the selection of tne value of parameters m, and m2 have been

satisfied with a small error. Furtnermore, we will consider that the

first two equations of (5.7) ,ave Deen realized with complete

precision.

We will introduca tha Daruoux triangle x0 y0 z0 , whose sides x0

and yO are tangint to tae Eaztas sphere [5, 7] and, consequently,

also nonrotating sphere S. Side x0 is directed along the velocity

vector v of the apex of tne trianpie relative to sphera S. We will

call triangl - xOyOzO a natura . Darnoux triangle. 4e will place its

apex in the center of the moving oject, i.e., at the origin of

coordinate system xyz, whica is rigidly bound to the stabilized

platform. The projecticas oz tue angular velocity wO of the natural

Darboux triangla on sides xO, yO and z0 ars represented by the

formula3

. °  U, .---- )
0 

- -.V = , (7.1)

At a given velocity v = v(t), functions Z = Z(t) determine [7)

the geodesic curvature cf the trajectory of the apex of triangle

x0 y0 z0 on sphere S.

-0.+
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In turn, the projections oz tae acceleration of the apex of the

triangle during its movemanr relative to nonrotating sphere S onto

sides xO, yO and z0 are expressed by the formulae

We =w - = C, We (7.2)

Henceforth, we will use tne table of cosines of thq angles

between the axes of cocrdiaat% system xyz and the sides of the

triangle x~y~zO. It is:

xo Y z

00 lll rCOG 10 _ sin T sin a{ Si a sin T, Cos 13 +. COG Y 51l0 a I 61 --COG Q 4111 0

in y-l id Cos fl WoeCOSBCOi Co aoeI

z ~ la -.rI- S~ldyIfl6 o s flu TI|oB - ooi, 11fS oOS cao io80 (7.3)

Here the angles a, d, escribe the orientation of coordinate

system xyz ralative to triangle xQ°yz ° (Fig. 8). The angle I is the

angl3 of rotation of the auxiliary coordinate systam x'y'z' relative

to the triangle. The z'-axis of tais system coincides with side z0 .

The coordinat4 system is rotated ccunterclockwise (viewed from the

positive part of the z'-axis) until the x'-axis coincides with plane

zx. Similarly, angle m is detdrminad by the relative position of

coordinate system x~y'z' ana another auxiliary system x"ymz", the x'-

and x"-axes of whica ccinc;de., Toe z"-axis of the latter coordinate

systam also coincides witn Plane zx, as a rasult of which its axis y"



DOC = 0925 PAGE 25

turns out to be directed along toe y-axis.

Olt

Fig. 6.

Whan a > 0, coordinate system x"y"z" is turned counterclockwise

relative to system xI'y'zI, if we observe its rotation from the

positive part of/ the x '-axis (or, analogously, the xft-axis) .

Finally, angle A is tua angle betwien x- and xf-axes of

coordinate systems xyz and z"y"z". The sign of angle 0 is determined

analogously to the signs of angles 1 and a.

The angular velocity w ox coordinate system xyz relative to

nonrotating sphere s is the geometric sum of the angular velocity wo

of the natural Darboux triaAg~e reiative to the same sphere and the

three relative angular velocities dT/dt, da/dt and do/dt. The latter

are the angular velocities of coordlinate. system x'y'z# relative to

dl dl

'" . . .= .... . .. .. . ..- .... . . .. . . .. .... . . . . .:. . ..2 . .. . . .. .. . . . ... . . .L,.I al . . . . . " "" f
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triangla x0y~z0 , of systes x"y"z" relative to x'y'z', and, finally,

of coordinate systsm xyz, i.e., the stabilized platform, relative to

system x"y"z".

The relative angular velocity dy/dt is directed along side zo ,

the angular velocity da/dt - alcog the x'-axis, and angular velocity

do/dt - along the y-axis. The x'-dxis coincides with side xO with an

angle 7 = 0 which, iccording to Taole (7.3), makes it possible to

find the cosines of the angles formed by the direction of the

ralative angular velocity da/at to the axis of coordinate system xyz

(Fig. 8). Considering all of the anove, we obtain the following

expressions for the prc3ections my, ljgand w2of tae angular velocity

of the stabilized platform onto the axes of coordinate system xyz,

which is rigidly bound tc it:

-(sinyCosp + CosysinatsinP) +(Z + )C03ain P) + CaS

= Z-cosycos+ +) sina+ (7.4)

Using table (7.3) and formulae (7.2), we then arrive at the

expressions for the projrctions wj, vu and w7 of the acceleration of

the origin of coordinate system xyz, namely
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d =v (cosy cos - siny sin, asin ) a(sinycosp + cosysin asinP) -

- C( coscsinp)
dv •(7.5)wv = L7 (- sin y cos a) +Zv cos y cos a - -f sinM 75

dv

- COS a COS

In this casa, unlike io, tne projections of the force of gravity

on the x- and y-axes are aireday aonzaro. Therefore, the

newtnoapters located cn tne x- aaa y-axes will measure the sum of

accelerations w. and w* correspcnding to the projections (with the

opposite signs) of the acceleration of the force of gravity j onto

these same axes. This acceleration is directed along side z0 toward

the center of the Earth. Now, considering formulae (7.5) and (7.3),

we will find that the readiags a. and aI of the corresponding

newtonometers should be expressa Dy the formulae

dv
= (cos y cos -sin y sin a sin ) + @v (sin y cosP + Cosy sin at sin ) +

+ (,- I) (- cosasinP) (7.6)

aV = L (- sin . cos C) + 4v cos y Cos + ( - sin a

Now we will form tne moments 81 and M2 according to formulae

(5.2), while 2!3, like before, will be considered to be equal to zero.

According to relationships (5.1), we will have

/
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"W -- -f adt-- . taw adt +--f , 0 (7.7)H H

* 0e o I

As follows from fczuLiae (7.4) and (7.6), these equations can be

considered to be the system oi equations for ietermining the time

functions a(t), 0(t) and y't) with the given functions v(t) and W(t).

Differentiating the first two equations of (7.7) with respect to

time, w- will arrive at a sjstem of dif.ferential equations for the

same unknown functions:

dtax K dcou K
-' +-_ - a,=O, ---- a- - , 0 (7.8)

Considering angles a and i in formulae (7.4) and (7.6) to be

small, and disregarding tae second-order terms relative to these

variables, we will reduce zae expressions for wx,(a,,w:,ax and a. to

vR(. di di4

(~,RCO~m~~ +dt di

w~.cos~y csy) dy (7.)

a, = cosy -s

Since s--0- sin y + tv Cosy +of

I Sin ce a 0, acccrdiag to ta third formula of 17.91,
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40 - d = -(XCo iadi R ¢ o7 -- i (7.10)

Whence it follows hdt taa rms

contained in the first two formuide of (7.9) are of the second order

of smallness relative to veri Dlv- a and 0 and, consequently, they

can be Iropped. Thus, wita 9iracs.Ln down to the second order of

smallaess, wge will havs

Ssin + Cosy(7.12)

Now, if wa use relationsaip t7.10) to aliminate function 5(t)

from the fourth and fiftb formaulae of (7.9), after simple

transformations we will oatain the following expressions for the

values of a and a1 :

a -L - (v sin y) + 2- (a cos y -sin ) cos + t

Finally. substituting tua values of w,, ,a, and a in the first

two equations of (7.8) accord.Lng tc formulae (7.12) and (7.13) and

considering equation (2.2), after obvious simplifications, we will
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arrive at two second-order dilterantial equations:

dt' 2, t va ( a sin Y+ Cos Y) si a
j-12 R Ri(7. 14)

-s + -(at sin T + cos y) cosY

Together with relationsnip (7.10), they form a syste. of

differantial squations fcr tas functions a(t), 0(t) and y(t).

Considering tha smalinss of the values cf a and 0, angle y in

equations (7. 14) can be replacea Dy the integral

T-t +yo (7.15)

where 1o is the value cf tae angle y bptveen the x-axis and side x°

(i.e., the velocity vectcr of tue center of the object) at the

initial point in time. As i is easy to confirm from equations (7. 10)

and (7.14), the errors whicni arise during this substitution are of

the second order of smallness.

Thus, the study of small oscillations of a stabilized platform

is reduced to the integration of two linear differential equations

with variable coefficients depending on time'.
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Footnote: 'It is curious to flota tae complete identity of equations

(7.14) of small oscillatlons of the stabilized platform in question

with the equations of small oscilliations of a certain physical

pendulum with a reference point moving over sphere S. The equilibrium

conditions of this pendula reitive to the natural Darboux triangle

are given in report [5). Snd foctnote

8. Setting aside the integration of the differential equations

(7.14) of small oscillations of tad platform during random movement

of the center of the c]tect cve tne Earth's sphere, we will limit

ourselves to the case -W = 0 and v = const, which corresponds to

movement at a constant velocity over an arc of the great circle of

nonrotating sphere S. In uais case, movement relative to the Earth

will occur with a variable relative velocity over a complex

trajectory. Setting Z - 0 in formula (7.15), we conclude that the

angle y in system of ditferential equations (7.14) should be

considered to be constant. As a result, system (7.14) is broken down

into two independent equations:

d(, + si0 (8Y))

0 (.cosy- painy) + (cosy - Psiny) -0

The first of them ccrrasjoads to the angular oscillations of the
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platform around the side y0 of tae natural Darboux triangle, and the

second - around sida x o , rrspecrively. As we already mentioned above,

side xO is directed alcng velocity vector v. The frequencies of these

oscillations are close tcgetAer, as long as the value of the velocity

v is not too great (e.g., a value less than the velocity of points on

the Earth's equator during its diurnal rotation). This corresponds to

a period of time approxiiarely equal to 84 min. (i.e., the Schuler

period).

9. In the presence of small oscillations of a stabilized

platform, i.e., when anylas a and are nonzero, relationships (5.5)

will be realized with a certain error. Furthermore, the initial

equations (5.6) for this sethoa of autonomous determination of

location cannot be turned into frecise identities because of the

presence of projections of tha acceleration of gravity j in the

neutonometer readings a. and a,. one would expect the errors in

determining the latitude and longitude of the location of the moving

object and its course, which occur because of the above

circumstances, to fluctuate. However, additional research is

necessary for the precise determination of the nature of the change

in these errors through time.
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10. Above it was assumed that the center of the object moves

over the sphere S, on tne basis of which it was assumed that v = 0

informulae (5.3). Now we iil shcw how to sliminate this restrictive

condition.

Suppose that a platorm srabilized by gyroscopes moves so that

its plane remains perpe-diculaz to the Earth's radius. In this case,

it is necessary to satisfy the same equations (5.5) , where vx and v V

like before, are the projections oi the velocity v of the center of

the iardan suspension or zaa piatcirm onto the x- and y-axes relative

to the spher . S, and w ad n ard the projections of its angular

velocity w onto the same aeas. Thus, we should have

Wv V,

Unlike equations (5.3), aere R = R(t) is the variable value of

the distance between the caataer of the cardan suspension of the

platform and the center cf spaere S.

The angular velocities w and w,, are created by applying moments

M, and M, to the platfcrm according to the first two formulae of

(5.1). Consequently, mcneats a& and M2 should be formed according to

the aquations
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H H
2 , =(10.2)

We will place two newtonometars, whose axes of sensitivity are

directed along the x- and y-axss, dhich lie in the plans of the

platform, in lirect proximity to zae center of the cardan suspension.

Their readings a,(t) and aT(t) wili not contain the projections of

the acceleration of gravity j onto the x- and y-axas, since by

assumption, as it moves taa szdb.iizad platform remains perpendicular

to the straight line ccnnecting the center of the cardan suspension

and the center of sphere S. Based on this, we can set

d z  dv

axt w, +.' uv -- + o~~Vg, aV(1)p=VL+0V-4V (10.3

Here, unlike the case in j6, v. is already nonzero and is

expressed as

dR (10.4)

Like before, if we consider Aj = 0, then according to the third

formula of (5.1), we again obtain w- = 0, i.e., the platform will not

have its angular velocity compoaeat w along the z-axis directed along

the radius of sphere S. Consideriny this, as well as formulae (10.1)
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and (10.4), according tc aluaticas (10.3), we arrive at the

relationships

a.() + -" L a. (t) +(1v.ddsz R di dsv 9-9d

These relationshiFs can ie considered to be differential

equations which make it possiala to plot functions v. (t) and v,,(t)

with known functions a% tt) and A4t), as well as R = R(t). The values

of the former functions ar_ necessary for forming aomeats n, and M2,

which control tha orientation oi the platform.

The solution of equations (10.5) is reduced to the quadratic

eq uat ions

,= i'- a (t)di+R(wv. - LY"a' tJOkI (1p

0 0

Thus, according tc formulae (10.2), moments N1 and M2 should be

formad from the newtoncerar readiags aj,(t) and att) as follows:

o (10.7),

M - 4 R(t) a.(t) dt + R (0) v.(0)]

For this purpose, aivices which multiply and divide the current

values must ba provided, as wail as integrators.
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The variable value cf d = 8(t) in equations (10.7) is considered

be known in advance. However, tne presence of a third nawtonometer

whosa axis of sansitivity is jaraill to tha z-axis (the Earth's

radius) theoretically makes it iossible to determine this function

independr.nt of any other auxiiiary devices. Actually, the reading of

this newtonometer is determined by the formula

a, = w -- + wv" -- -- (10.8)

Here.

a2  (10.9)

the acceleration of gravity, waica decreases with the increase in the

distance from the Earth's center, Jo is its value on the Earth's

surface, whose radius is dasinated as R0 .

Using formulae (10. 1), (10.4) and (10.9), we obtain the

following for function R(t)

'R V 1 + %I~ ____R@
a =' " = a-0) (10-10)

The device which inteyrates tais differential equation must be

connected to oni system vitn integrators which reproduce moments M2
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and 41. According to formulae (10.2), these moments differ from

functions vI(t) and v) (t) only in the constant factor. Actually,

functions v,(t) and vT(t) are in ejuation (10.10); in turn, function

R(t) is used in formulae (I1. o ) .

Problems of tha stall.ty oz this computational system require

special examination. without ua.scussing the study of small

oscillations of the statiizia g platform, either, we will point out

that thq subsequent solution or tua problem of the location of a

moving object is reduced to tae iategration of the same system of

differential equations (6.5), waare w,(t) and wat) are considered to

be known functions of tiif on tne oasis of formulae (10.1), (10.2)

and (10.6).
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